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ESTIMATION OF THE EFFECTIVE ABSORPTIVITY OF METALS

FROM THE OBSERVATION OF THEIR MARTENSITIC

RESTRUCTURING UNDER LASER RADIATION

UDC 539.377A. A. Evtushenko,1 E. G. Ivanik,2

K. Rożniakowski,3 and I. M. Dobryanskii4

A new experimental method is proposed for determining the effective absorptivity of a metal un-
der pulsed laser radiation. The method is based on solving an axisymmetric boundary-value heat-
conduction problem for a half-space with the use of metallographically measured sizes of the polymorphic-
transformation zone in the irradiated material. The method is tested on single-crystal cobalt and
St. 45 steel samples.
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Introduction. Determination of the reflectivity R (or absorptivity A = 1−R) of metals exposed to pulsed
concentrated heat fluxes is a complicated problem that involves many factors, including the intensity of the incident
laser radiation, space–time characteristics of the radiation pulses, wavelength of the electromagnetic wave, physical
characteristics of the material (primarily, its chemical composition), metal surface finish, and properties of the
ambient medium [1–3]. Normally, such measurements are performed by calorimetric methods, whose accuracy is
generally low. Moreover, it should be taken into account that reflected radiation contains a diffusive component,
whose registration requires the use of specially tailored calorimeters with wide fields of vision and high absorptivity
[4–13].

At certain temperatures below the melting point, metals undergo polymorphic transformations or restruc-
turing (recrystallization, growth of grains, etc.); as a result, a new crystalline structure is formed. In particular, at
high cooling rates, there emerges the so-called martensite structure, whose dominating component is martensite,
an oversaturated solution of carbon in α-iron. Regions with the martensite structure display enhanced hardness
and high resistance to wear; these properties of the martensite structure are used in fabricating surface-hardened
structural components for advanced machinery. In steels locally treated with laser radiation, the martensite-layer
thickness can be rather accurately measured by metallographic methods with a scanning microscope [14–17].

The objective of the present study was to develop theoretical foundations and an experimental procedure for
determining the effective absorptivity of metals, based on the analytical solution of an axisymmetric boundary-value
heat-conduction problem for a semibounded body and measured sizes of the zone where structural transformations
induced by laser radiation occur. The case of a one-dimensional (in terms of the spatial coordinate) temperature
field was previously treated in [3, 18].

1. Formulation of the Problem. A laser beam acting on the surface of a metal with an incident light
intensity of 104–108 W/m2 is equivalent to a distributed source of heat of a certain specified power (heat flux with
known intensity) [1]. Assuming that the laser power density is such that no material melting or evaporation occurs
in the surface layer of the metal, the radiative and convective heat losses from the surface of the heated sample are

1Polytechnika Byalostotska, Byalystok, Poland. 2Podstrigach Institute for Applied Problems in Mechan-
ics and Mathematics, Ukrainian National Academy of Sciences, L’vov 79053, Ukraine. 3Polytechnika Lodz’ka,
Lodz’ 93-590, Poland. 4L’vov State Agricultural University, L’vov 80381, Ukraine. Translated from Prikladnaya
Mekhanika i Tekhnicheskaya Fizika, Vol. 45, No. 1, pp. 173–184, January–February, 2004. Original article submitted
March 25, 2003; revision submitted June 25, 2003.

142 0021-8944/04/4501-0142 c© 2004 Plenum Publishing Corporation



negligible, and all thermophysical characteristics of the material are temperature-independent, we formulate the
following axisymmetric boundary-value heat-conduction problem for a semi-infinite body:
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=
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∂T
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, r > 0, z > 0, t > 0; (1)

T (r, z, 0) = 0, r > 0, z > 0; (2)

k
∂T

∂z
= −Aq(r)H(ts − t), r > 0, z = 0, t > 0; (3)

T (∞, z, t) = T (r,∞, t) = 0, t > 0. (4)

Here T is the temperature, q is the radiation intensity, A is the effective (time-averaged integral) absorptivity, k is
the thermal conductivity, æ is the thermal diffusivity, r and z are the radial and axial coordinates in the cylindrical
coordinate system whose origin coincides with the center of the heated spot, t is the time, ts is the duration of the
laser pulse, and H is the unit Heaviside function.

If the power density of incident radiation is uniformly distributed within the heating spot, which is a circle
of radius a on the body surface, we have

q(r) = q0H(a− r), r > 0. (5)

The power density of the incident radiation flux can also be represented as [19]

q(r) = q∗fq∗(r), q∗(r) = [f + (1− f)Kr2] exp (−Kr2), r > 0, (6)

where K is a coefficient that defines the sharpness of the heat-flux distribution peak, q∗f is a certain characteristic
value of the heat flux q, and 0 6 f 6 1 is a parameter that characterizes the spatial distribution of the incident
radiation intensity. Relation (6) yields the normal (Gaussian) distribution of the incident intensity for f = 1 and
an annular distribution for f = 0.

Distributions (5) and (6) are related by the concentration coefficient K [1]:

K = Bfa−2. (7)

The numerical factor Bf in equality (7) can be found from the condition [3]

Qf/Q = (1− 1/e) ≈ 0.632, (8)

where, by virtue of (6),

Q = 2π

∞∫
0

q(r)r dr =
q∗f
Bf

πa2; (9)

Qf = 2π

a∫
0

q(r)r dr = {1− [1 + (1− f)Bf ] exp (−Bf )}Q. (10)

Substituting the total power density Q (9) and the power Qf (10) concentrated within the circular region
of radius a on the half-space surface into condition (8), we obtain the nonlinear equation for Bf

[1 + (1− f)Bf ] exp (−Bf ) = 1/e ≈ 0.3678. (11)

The roots Bf of Eq. (11) are linear functions of f : Bf = B0(1− f) + f (B0 = 2.1462 is the value of Bf for f = 0).
From condition (9), in addition to relations (5) and (6), we obtain

q∗f = Bfq0. (12)

We introduce the following dimensionless variables and parameters:

ρ =
r

a
, Z =

z

a
, Fo =

æt

a2
, Fos =

æts
a2

, Λ =
q0a

k
. (13)

Then, taking into account relation between (7), (12), and (13), we rewrite the boundary-value problem (1)–(4) as
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+
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=
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∂ Fo
, ρ > 0, Z > 0, Fo > 0; (14)
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Fig. 1. Distribution of the dimensionless heat flux q∗ (18) on the half-space surface.

T (ρ, Z, 0) = 0, ρ > 0, Z > 0; (15)

∂T

∂Z
= −AΛq∗(ρ)H(Fos−Fo), ρ > 0, Z = 0, Fo > 0; (16)

T (∞, Z,Fo) = T (ρ,∞,Fo) = 0, Fo > 0. (17)

where

q∗(ρ) = Bf [f + (1− f)Bfρ2] exp (−Bfρ2). (18)

The function q∗(ρ) given by formula (18) is plotted in Fig. 1 for three values of f . The solid, dashed, and
dot-and-dashed curves in Figs. 1–7 refer to f = 1 [normal distribution of the radiation intensity (6)], f = 0.5, and
f = 0, respectively.

2. Temperature Field. The solution of the boundary-value heat-conduction problem (14)–(17), obtained
by successive application of integral zeroth-order Hankel transforms with respect to the radial variable r and the
Laplace transform with respect to the time t, has the form

T (r, z, t) = AΛ

∞∫
0

ϕ(ξ)Φ(ξ, Z,Fo)J0(ξρ) dξ, r > 0, z > 0, t > 0; (19)
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)
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)]
, (22)

where Jm is the Bessel function of the first kind of order m and erfc ( · ) = 1− erf ( · ) [erf ( · ) is the error function].
We consider some particular cases resulting from solution (19)–(22). As ts → ∞ (Fos → ∞), relation (21)

yields Φ(ξ, Z, Fo) = Φ0(ξ, Z,Fo), and expression (19) coincides with the solution for continuous emission [19, 20].
Passing to the limit in Eq. (22) as t →∞ (Fo →∞), we obtain Φ0(ξ, Z, Fo) = exp (−ξZ), and solution (19) acquires
the form

T (r, z,∞) = AΛ

∞∫
0

ϕ(ξ) exp (−ξZ)J0(ξρ) dξ, r > 0, z > 0. (23)
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Additionally putting z = 0 in Eq. (23), we find the stationary temperature on the half-space surface:

T (r, 0,∞) = AΛ

∞∫
0

ϕ(ξ)J0(ξρ) dξ, r > 0. (24)
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where Im is the modified Bessel function of the first kind of order m, from (24) we obtain
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In a similar manner, from (23), we find the temperature distribution along the axis ρ = 0:

T (0, z,∞) = AΛ
{Z

2
(1− f) +

[1
2

(1 + f)− (1− f)Z2
]√

πBf

2
exp (BfZ2) erfc (

√
BfZ)

}
. (26)

It follows from Eqs. (25) and (26) that the stationary temperature at the center of the heat-flux source for
an arbitrarily distributed intensity of laser radiation (6) is

T (0, 0,∞) = AΛ
√

πBf (1 + f)/4. (27)

For normally distributed radiation intensity (f = 1 and Bf = 1), formula (27) yields [22]

T (0, 0,∞) = AΛ
√

π/2 ≈ 0.8862AΛ,

while for the annular distribution (f = 0 and Bf = 2.1462), we have

T (0, 0,∞) = AΛ
√

πBf/2 ≈ 0.6492AΛ.

The evolution of the dimensionless temperature T ∗ = T/(AΛ) on the surface at the center of the heat-flux
source (ρ = 0 and Z = 0) and inside the body (ρ = 0 and Z = 0.4) is illustrated in Fig. 2. It should be noted that
the temperature maximum on the body surface corresponds to the end of the laser pulse, t = ts (Fo = Fos), whereas
the temperature maximum in the near-surface layer is observed at the time t = th = ts + ∆t (in dimensionless
variables, we have Foh = Fos +∆ Fo, where ∆ Fo = k∆t/a2). As we go father from the working surface of the body,
the delay time ∆t (∆ Fo) rapidly increases (Fig. 3). At a fixed depth, the delay time ∆t has the least value for the
normally distributed power density and the highest value for the annular distribution.

The distribution pattern of the power density of incident radiation q∗ (18) substantially affects only the
surface temperature. The maximum temperature is reached at the center of the heating spot (r = 0) in the
case of normally distributed radiation intensity and closer to the edge of the spot (r = 0.6a) in the case of the
annular distribution (Fig. 4). The effective heating depth (distance from the irradiated surface to the point where
the temperature amounts to 5% of its maximum value) is almost independent of the distribution of the incident
heat-flux intensity, amounting to 1.5a for the dimensionless irradiation time Fos = 0.672 (Fig. 5).

3. Absorptivity. The delay time ∆t is defined as the time at which the temperature T at the point (r, z)
inside the body attains its maximum value:

∂T (r, z, t)
∂t

∣∣∣
t=th

= 0, r > 0, z > 0. (28)
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Fig. 2. Evolution of the dimensionless temperature T ∗ on the surface of the irradiated body (ρ = 0
and Z = 0) and inside it (ρ = 0 and Z = 0.4).

Fig. 3. Distribution of the dimensionless delay time ∆Fo over the thickness Z of the irradiated body
along the axial axis for Fo = 0.672.

We differentiate solution (19)–(22) with respect to the time t and obtain

∂T (r, z, t)
∂t
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æ
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Taking into account the form of the function ϕ(ξ) (20) and the value of derivative (31), we bring the integral
M(ρ, Z,Fo) (30) to the form
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We substitute relations (33) and (34) into equality (32) and obtain
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Fig. 4. Distribution of the dimensionless temperature T ∗ over the radial coordinate ρ on the half-
space surface (Z = 0) and at the depth Z = 0.4 for Fo = 0.672.

Fig. 5. Variation of the dimensionless temperature T ∗ over the thickness Z of the irradiated body
along the axial axis for Fo = 0.672.

With allowance for relations (29) and (35), condition (28) results in the following nonlinear functional
equation for the dimensionless delay time ∆ Fo:

C1C
3
2Df (ρ) = exp [−(C3ρ

2 + C4Z
2)], ρ > 0, Z > 0. (36)

Here

C1 =
√

1− Fos

Foh
, C2 = 1− 4Bf Fos

1 + 4Bf Foh
; (37)

C3 =
4Bf Fos

(1 + 4Bf∆ Fo)(1 + 4Bf Foh)
, C4 =

Fos

4∆ Fo Foh
; (38)

Df (ρ) =
(1− f)Bfρ2 + (1 + 4Bf Foh)(f + 4Bf Foh)
(1− f)Bfρ2 + (1 + 4Bf∆ Fo)(f + 4Bf∆ Fo)

. (39)

Taking the logarithm of (36), we obtain

C3ρ
2 + C4Z

2 = ln [C1C
3
2Df (ρ)]−1, ρ > 0, Z > 0. (40)

Equation (40) defines the temperature-maximum isotherm for given values of Fos and ∆ Fo (Fig. 6).
In the case of normally distributed radiation intensity (f = 1 and Bf = 1), the function Df (ρ) (39) is

independent of the radial variable and equals

Df (ρ) = D1 = (1 + 4Foh)2/(1 + 4∆ Fo)2 = C−2
2 (41)

[the coefficient C2 is defined by Eq. (37)]. With allowance for (41), Eq. (40) acquires the form

ρ2/α2 + Z2/β2 = 1, |ρ| 6 α, 0 6 Z 6 β, (42)

where

α2 = ln (C1C2)−1/C3, β2 = ln (C1C2)−1/C4, (43)

and the coefficients Ck (k = 1, 2, 3, 4) are given by formulas (37) and (38).
Thus, the curve of the maximum dimensionless temperature for the Gaussian distribution of laser power

density is a semi-ellipse (42) whose axes are defined by expressions (43) (Fig. 6). The dimensional lengths of the
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Fig. 6. Curves of maximum dimensional temperature T ∗
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calculated for Fos = 0.672 and ∆Fo = 0.0054.

axes of this semi-ellipse are rh = αa and zh = βa. In the case of the annular distribution of radiation intensity, the
isotherm is shaped as a curve whose maximum is shifted from the axial axis.

Equation (40) can also be considered from an alternative viewpoint. We assume that the shape and size
(parameters ρ and Z) of the phase-transformation zone arising in the body when the temperature reaches a certain
temperature Th specific for the body material are known. Then, the dimensionless delay time ∆ Fo can be found
from Eq. (40) or (42). After that, the condition T (r, z, th) = Th, where the temperature T is given by relations
(19)–(22), can be used to derive the final formula for the effective absorptivity:

A = ThA∗/Λ. (44)

Here

A∗ =
( ∞∫

0

ϕ(ξ)[Φ0(ξ, Z, Fos)− Φ0(ξ, Z,∆ Fo)]J0(ξρ) dξ
)−1

. (45)

The parameter A∗ is plotted in Fig. 7 as a function of the dimensionless delay time ∆ Fo for three distributions
of heat-flux density. The calculations were performed by formula (45) for ρ = 0 and for the dimensionless depth Z

satisfying equality (40).
4. Comparison with Experimental Data. Experimental data for laser-irradiated single-crystal cobalt

samples were reported in [23]. Such single crystals are known to have either a hexagonal or a cubic lattice structure.
The martensite transition from one phase to the other occurs at Th = 693 K.

The hexagonal phase exhibits strong magnetic anisotropy along the [0001] axis, giving rise to a magnetic field
over the plane normal to the anisotropy axis; i.e., in this case, the conditions for the formation of open magnetic
domains (regions of the Kittel type) are satisfied. The SEM image of the thus-structured material surface is shown
in Fig. 8a. The cubic phase displays open magnetic domains of the Landau–Lifshits type (Fig. 8b).

A single-crystal cobalt sample 5 mm thick was cut so that the microsection of the irradiated surface was
orthogonal to the magnetic-anisotropy axis [0001]. Different portions of the sample initially located in air at room
temperature were irradiated by pulses from a Kvant-15 laser with a radiation energy E = 8 J, pulse duration
ts = 4.5 msec, wavelength λ = 1.06 µm, and heating spot radius a = 0.35 mm. The laser power density of the
normal (Gaussian) mode was chosen such that only a thin surface layer of the material (thinner than 3 µm) was
fused. In this region, and also in the vicinity of this region, no open domains of the Kittel type were observed. After
a layer of the sample material approximately 100 µm thick was slowly and carefully ground away, is was possible
to observe such domains. Hence, the surface layer was heated at least to the characteristic onset temperature of
polymorphic transformations in cobalt, Th = 693 K.
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bà

Fig. 8. Laser-irradiated region on the surface of the single-crystal cobalt sample: (a) magnetic-
domain structure before radiation; the average width of the domains is 75 µm; (b) magnetic-domain
structure after grinding of a 100-µm surface layer.

The thermal conductivity of cobalt is k = 70.9 W/(m ·K), and its thermal diffusivity is æ = 1.83·10−5 m2/sec.
The maximum depth of martensite transformations is zh 6 100 µm [23]. The laser power density at the center of
the irradiated spot is q0 = E/(πa2ts) = 4.62 · 109 W/m2. Thus, we have Λ = 0.228 · 105 K. The dimensionless
irradiation time is Fos = 0.672, and the maximum dimensionless depth of martensite transformations at the center
of the irradiated spot is Zh = zh/a = 0.286. According to the data in Fig. 3, the dimensionless delay time for
these values is ∆ Fo = 0.0054. Then, we find A∗ = 3.688 by formula (45); Eq. (44) yields the effective absorptivity
A = 11.2%, which agrees well with the value A = 10% previously reported by Rożniakowski [3, 23].

Experimental data on laser hardening of St. 45 steel samples [Th = 850◦C, k = 33.5 W/(m ·K), and
æ = 15 · 10−6 m2/sec] were reported in [24]. Different portions of the sample shaped as a circular cylinder 6 mm
thick and 20 mm in diameter were exposed to pulsed radiation emitted by a glass-based neodymium laser (Nd : YAG)
in the standard generation regime (E = 1.5 J and ts = 2 msec). After preparation of microsections of the hardened
layer and their etching in an alcohol solution of nitric acid, the maximum length (rh) and depth (zh) of the hardened
zone were measured with the help of an EPITYP-2 metallographic microscope (Fig. 9). The depth of the hardened
layer (zh) was found to be largely dependent on the radiation power density q0, which could be controlled by focusing.
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50 µm

Fig. 9. Region of hardening of the St. 45 steel sample surface.

Fusion of irradiated portions started at q0 > 85 · 107 W/m2. For q0 = 58 · 107 W/m2, the value zh = 40 µm was
obtained. The radius of the surface heat-flux source was a = 0.64 mm; hence, the dimensionless irradiation duration
was Fos = 0.073. For ρ = 0 and Z ≡ zh/a = 0.062, Eq. (42) yields the dimensionless delay time ∆ Fo = 0.329 ·10−3.
For these values of dimensionless geometric and time parameters, relation (45) yields A∗ = 4.5, and formula (44)
yields the absorptivity A = 41.8% , which falls within the range of experimental values A = 30–50% reported in [24].

Conclusions. In determining the isotherms bounding the phase-transformation region in steel samples,
errors in temperature estimates induced by quenching inertia can occur [18]; this circumstance restricts the set
of materials to which the method considered in the present paper can be applied. Such materials include metals
and metal alloys, for which, first, phase-transition temperatures are known and, second, experimental (laboratory)
observations of the onset of structural changes in the metallographic cross section are possible.

REFERENCES

1. N. N. Rykalin, A. A. Uglov, and A. N. Kokora, Laser Processing of Materials [in Russian], Mashinostroenie,
Moscow (1975).

2. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, Effect of High-Intensity Radiation on Metals
[in Russian], Nauka, Moscow (1970).
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23. K. Rożniakowski, “Laser-excited magnetic change in cobalt monocrystal,” J. Mater. Sci., 26, 5811–5814 (1991).
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